Trehalose protects against oxidative stress by regulating the Keap1–Nrf2 and autophagy pathways
نویسندگان
چکیده
Dysfunction of autophagy, which regulates cellular homeostasis by degrading organelles and proteins, is associated with pathogenesis of various diseases such as cancer, neurodegeneration and metabolic disease. Trehalose, a naturally occurring nontoxic disaccharide found in plants, insects, microorganisms and invertebrates, but not in mammals, was reported to function as a mechanistic target of the rapamycin (mTOR)-independent inducer of autophagy. In addition, trehalose functions as an antioxidant though its underlying molecular mechanisms remain unclear. In this study, we showed that trehalose not only promoted autophagy, but also increased p62 protein expression, in an autophagy-independent manner. In addition, trehalose increased nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) in a p62-dependent manner and enhance expression of its downstream antioxidant factors, heme oxygenase-1 (Ho-1) and nicotinamide adenine dinucleotide phosphate quinone dehydrogenase 1 (Nqo1). Moreover, treatment with trehalose significantly reduced amount of reactive oxygen species. Collectively, these results suggested that trehalose can function as a novel activator of the p62-Keap1/Nrf2 pathway, in addition to inducing autophagy. Therefore, trehalose may be useful to treat many chronic diseases involving oxidative stress and dysfunction of autophagy.
منابع مشابه
Trehalose Neuroprotective Effects on the Substantia Nigra Dopaminergic Cells by Activating Autophagy and Non-canonical Nrf2 Pathways
Trehalose, as a natural disaccharide, is known as an autophagy inducer. The neuroprotectiveeffects of trehalose in the rat model of Parkinson′s disease were the aim of the present study.Parkinson′s disease model was induced by injecting 6-hydroxydopamine (6-OHDA) in thestriatum of male Wistar rats. Apomorphine-induced behavior and substantia nigra neuronalcounts were app...
متن کاملTrehalose Neuroprotective Effects on the Substantia Nigra Dopaminergic Cells by Activating Autophagy and Non-canonical Nrf2 Pathways
Trehalose, as a natural disaccharide, is known as an autophagy inducer. The neuroprotectiveeffects of trehalose in the rat model of Parkinson′s disease were the aim of the present study.Parkinson′s disease model was induced by injecting 6-hydroxydopamine (6-OHDA) in thestriatum of male Wistar rats. Apomorphine-induced behavior and substantia nigra neuronalcounts were app...
متن کاملProtection against oxidative stress mediated by the Nrf2/Keap1 axis is impaired in Primary Biliary Cholangitis
In response to oxidative stress, nuclear factor (erythroid-derived 2)-like2 (Nrf2) induces expression of cytoprotective genes. The Nrf2 pathway is controlled by microRNAs and Kelch-like ECH-associated protein1 (Keap1). Nrf2 is stabilized when Keap1 is degraded through the autophagy pathway in a p62-dependent manner. The inhibition of autophagy causes protein accumulation, and Keap1 is inactivat...
متن کاملSPBP Is a Sulforaphane Induced Transcriptional Coactivator of NRF2 Regulating Expression of the Autophagy Receptor p62/SQSTM1
Organisms exposed to oxidative stress respond by orchestrating a stress response to prevent further damage. Intracellular levels of antioxidant agents increase, and damaged components are removed by autophagy induction. The KEAP1-NRF2 signaling pathway is the main pathway responsible for cell defense against oxidative stress and for maintaining the cellular redox balance at physiological levels...
متن کاملThe role of Nrf2 in oxidative stress-induced endothelial injuries.
Endothelial dysfunction is an important risk factor for cardiovascular disease, and it represents the initial step in the pathogenesis of atherosclerosis. Failure to protect against oxidative stress-induced cellular damage accounts for endothelial dysfunction in the majority of pathophysiological conditions. Numerous antioxidant pathways are involved in cellular redox homeostasis, among which t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2018